martes, 12 de junio de 2018

Importancia de los diagramas TTT en la estimación de microestructuras en una soldadura

Los diagramas TTT son importantes en la estimación de microestructuras en aceros que van a ser tratados térmicamente. Se puede observar las variaciones microestructurales en función de la temperatura y el tiempo en la cual se realiza el enfriamiento de la pieza. En el caso de las soldaduras ocurren diferentes transformaciones que van desde la fundición y solidificación del charco hasta el tratamiento térmico en la zona adyacente a la línea de fusión. Aunque esta no se funde las altas temperaturas y la rapidez de enfriamiento pueden generar cambios microestructurales.
Veamos este ejemplo con dos aceros, el primero SAE 1080 y el segundo AISI 4340, la pregunta realizada es ¿Cual sería las posibles microestructuras de estos aceros en su zona afectada por el calor si la rapidez de enfriamiento es 150°F/s?

Fig. 1 Diagrama TTT Acero SAE 1080

Como pueden observar (Fig. 1) la linea roja muestra el lugar aproximado que representa la velocidad de enfriamiento de esta pieza. Se puede apreciar que toca la zona de transformación martensitica y tambien cruza la linea de transformación perlítica por lo que se puede estimar que la zona afectada por el calor tendrá martensita y perlita como microestructuras finales.


 
 Fig. 2 Diagrama TTT Acero AISI 4340 

En el caso del acero AISI 4340 (Fig. 2) la transfomación es mucho más compleja debido a que a esa rapidez de enfriamiento se atravieza varias zonas de transformación lo cual a su vez se reflejara en diferentes microestructuras que van desde la martensita, pasando por la bainita y ferrita mas perlita. De esta manera los diagramas TTT resultan muy valiosos a la hora de estimar posibles microestructuras en un material y deben ser consultados cuando se tiene conocimiento de la velocidad de enfriamiento de una pieza sea en un tratamiento térmico o durante operaciones de soldadura.

sábado, 23 de septiembre de 2017

Diferencia entre Metal Puro y Solución Sólida

Un estudiante me preguntó ¿Cual era la diferencia entre un metal puro y una solución sólida porque el no las podía distinguir?

La respuesta a dicha pregunta es muy sencilla y la puedes ver en cualquier diagrama de fases. Primero, un metal puro tiene un punto de fusión definido mientras que una solución sólida no, la temperatura de fusión varía conforme se va agregando mas soluto a la solución. Segundo las soluciones sólidas se definen como átomos de soluto en la estructura del solvente. Veamos este ejemplo en el diagrama Cu-Zn (fig.1). Como dije los metales puros tienen sus temperaturas fijas definidas como el caso del cobre 1085 °C y el cinc 452 °C sin embargo, una vez que se forma una aleación entre estos metales (latón) la temperatura cambia. Para una aleación 20% Zn vemos que  funde aproximadamente a 1000°C si el porcentaje de cinc aumenta la temperatura de fusión de esta baja. Ese es un dato que debe siempre tenerse en cuenta para diferenciar a un metal puro de una aleación. Por otro lado a las aleaciones se les asigna letras griegas o como puede observase al metal se le coloca en paréntesis ( ), esto para diferenciarlo del metal puro de ahí que, (Cu) puede definirse como una aleación Cu-Zn o átomos de cinc en la estructura del cobre. Las soluciones sólidas pueden ser sustitucionales cuando un átomo sustituye a otro en la estructura cristalina o intersticial cuando este ocupa los espacios entre dos átomos y la ventaja de ellas es que mantienen las misma propiedades eléctricas y térmicas pero son mucho mas resistentes que los metales puros.   


Fig. 1 Diagrama Cu-Zn. Fuente: Metals handbook volumen 3 Diagramas de Fases y aleaciones
 

jueves, 1 de junio de 2017

Metalografia longitudinal y transversal de cabilla acero



Fig. 1 Preparación metalográfica de cabilla de acero. 
Abajo izquierda campo transversal. Abajo derecha campo longitudinal



Fig. 2. Microestructura campo Transversal 100X


Fig. 3.  Microestructura campo Longitudinal 100X



La siguiente serie de fotografías muestra la microestructura de una cabilla de acero. En la figura 1 se puede apreciar la preparación metalográfica de ambos campos transversal y longitudinal y en las figuras 2 y 3 se observa como varía la microestructura conforme se selecciona el campo de observación. En la figura 3 se puede apreciar los granos deformados producto de la deformación durante el proceso de elaboración de la cabilla.
Rectivo Nital 3 %

miércoles, 1 de marzo de 2017

Metalografía de mecha de acero para perforar madera



Imágenes editadas para realzar las partículas de segunda fase presentes en el material


(a)


(b) 
Imágenes originales (a) 100X y (b) 200X

La siguientes series de fotografías corresponden a una mecha de taladro de 3 mm de diametro utilizado en la perforación de madera. Los carburos en los aceros para herramientas dependerán del contenido de carbono y de la cantidad de elementos formadores de carburos ( Cr, Mo, V y W). Cuando la cementita esta presente en los aceros de baja aleación y al carbono; complejos tipos de carburo pueden encontrarse. La cementita es un tipo de carburo de la forma M3C  siendo este muy estable por debajo de 538°C. Un carburo de alto contenido de cromo de la forma M7C3 tambien se encuentra en aceros con medio a alto contenido de cromo. El M23C6 es un carburo rico en cromo de alta solubilidad en el hierro pero es menos resistente que otros carburos a base de Mo o W. La forma esférica y su marea de diseminarse en la matriz metálica le da al acero una resistencia mecánica elevada. Identificar correctamente estos carburo requieren de técnicas metalograficas mas específicas que un microscopio óptico.