Hola amigos y bienvenidos de nuevo a este espacio, hoy quiero que veamos una interesante microestructura de un acero 16Mo3 que nos ofrece el colega metalúrgico Farshad Ghadimi
Bienvenidos amigos, este es un blog dedicado a todos aquellos estudiantes y profesionales técnicos que deseen incrementar su conocimiento en el área de la metalurgia específicamente en metalografia, fractografía y metalurgia física. Muchas gracias
jueves, 15 de febrero de 2024
Microestructura de Acero Laminado
lunes, 15 de enero de 2024
Aleaciones de Cobre (Latones)
lunes, 8 de enero de 2024
Diagrama Hierro Carbono y su Importancia en la Metalurgia del Acero
Hoy iniciamo nuestro año hablando de una de las herramientas más importantes de la metalurgia del acero que es el diagrama Fe-C, el diagrama también es conocido como diagrama de equilibrio hierro - carbono es de tipo binario muy utilizado para comprender las transformaciones de fases que experimenta una aleación de hierro y carbono en función de su composición y temperatura.
Este diagrama se divide en tres principales regiones: la zona de aceros, la zona de fundiciones y la zona de transformación de fases. A su vez, estas regiones se subdividen en varias fases y sus respectivas temperaturas de transformación.
En la figura 1 se puede apreciar la zona de aceros, que abarca desde el 0% hasta alrededor del 2,14% de carbono, tenemos la presencia de dos fases principales: la ferrita α (alfa) y la cementita Fe₃C. La ferrita α es una fase sólida de hierro con una estructura cúbica centrada en el cuerpo, y es la fase más suave y dúctil en esta región. La cementita Fe₃C es una fase intermetálica dura y quebradiza.
La zona de las fundiciones, que va aproximadamente desde el 2,14% hasta el 6,7% de carbono, encontramos principalmente la presencia de la cementita Fe₃C. A medida que se aumenta el contenido de carbono, la cementita es la fase dominante y se forman diferentes tipos de fundiciones, como la fundición blanca, las otras fundiciones (grises o nodulares requieren de un tratamiento especial de fabricación)
Ahora bien, vamos a hacer un análisis dependiendo del área de estudio del estudiante, miremos el diagrama como un estudiante de laboratorio de metalografía y microestructuras, a temperatura ambiente solo se puede ver aceros con estructuras ferriticas y perlíticas en el microscopio según el diagrama Fe-C. Las proporciones entre ellas varian segun el % de Carbono, fíjense que la austenita no esta presente a temperatura ambiente, ni la ferrita delta. la única manera de obtener estas microestructuras a temperatura ambiente es con elementos aleantes, pero ese es otro tema.
Si miramos el diagrama como estudiantes de tratamientos térmicos debemos identificar las lineas críticas de transformación del acero en estado sólido, en la figura se puede apreciar las lineas Ae3 y Acm, la mayoría de los tratamientos térmicos tales como temple, normalizado y recocido total ocurren en esa zona sombreada ya sea para aceros de bajo carbono y para alto carbono.Los otros tratamientos tales como nitrurización y recocidos subcriticos buscan mejorar las propiedades del acero y la esferoidización busca modificar las estructura de la cementita, pero no superan los 760°C ya que el proposito no es la austenización.
Si miramos el diagrama desde el punto de vista de fundición fíjense que, a medida que el porcentaje de carbono se agrega al acero la temperatura de fusión de la aleación disminuye, esta es la razón por la que las fundiciones de hierro son más fáciles de procesar por su colabilidad y menos costosas que el acero.
El diagrama tambien muestra el punto de curie, la cual es la temperatura en la cual un material ferromagnético pierde su magnetización cuando se calienta. En el caso del hierro puro, este punto de curie es de aproximadamente 770°C. Sin embargo, en presencia de carbono y otras sustancias en aleaciones de hierro, las temperaturas de curie pueden variar.
Como resumen final podemos decir que el diagrama Fe-C permite, conocer la metalurgia del acero, entender los tratamientos térmicos, comprender las microestructura y su relación con las propiedades mecánicas, identificar las transformaciones en estado líquido y en estado sólido, estudiar la relación magnética del acero y la influencia del contenido de carbono en la aleación.
Te puede interesar
https://metalografiainsitu.blogspot.com/2021/03/tratamiento-termico-introduccion.html?m=0
https://metalografiainsitu.blogspot.com/2021/03/tratamiento-termico-de-temple.html?m=0
https://metalografiainsitu.blogspot.com/2021/03/tratamiento-termico-de-normalizado.html?m=0
https://metalografiainsitu.blogspot.com/2021/03/tratamientos-termicos-recocido.html?m=0
viernes, 15 de diciembre de 2023
Aceros para herramientas: Preparación Metalográfica y Análisis Microestrutural
martes, 14 de noviembre de 2023
Indices de Miller y su relación con la difracción de rayos X
Hola amigos y bienvenidos de nuevo a este blog educativo, hoy quiero hablarles de los indices de miller y su relación con la difraccion de rayos X
Para comenzar, vamos a hacer un pequeño resumen sobre las estructuras cristalinas. Los materiales sólidos como el acero, el aluminio, los latones y bronces, el plastico y los minerales pueden tener diferentes tipos de estructuras, pero las estructuras cristalinas son aquellas en las que los átomos, iones o moléculas están ordenados en un patrón regular y repetitivo en el espacio tridimensional.
Existen varios tipos de estructuras cristalinas, pero nos enfocaremos en los sistemas cúbico, tetragonal y hexagonal, que son los más comunes. Cada uno de estos sistemas tiene características específicas en cuanto a la forma en que se ordenan los átomos en la red cristalina.
1. Sistema cristalino cúbico:
En este sistema, los átomos se organizan en una red tridimensional con combinaciones de ejes x, y, y z que son perpendiculares entre sí, todos de igual longitud. Existen tres tipos de redes cristalinas cúbicas: la cúbica centrada en el cuerpo o BCC, la cúbica centrada en las caras o FCC y cúbica simple.
El hierro (Fe) es un metal que pertenece al sistema cristalino cúbico centrado en el cuerpo a temperatura ambiente.
2. Sistema cristalino hexagonal:
En este sistema, los átomos se organizan en una red tridimensional con ejes x e y perpendiculares entre sí, pero el eje z es inclinado en un ángulo de 120 grados. Además, la longitud del eje z es mayor que la de los otros dos ejes. La estructura cristalina hexagonal solo tiene una variante.
El magnesio (Mg) es un metal que pertenece al sistema cristalino hexagonal.
3. Sistema cristalino tetragonal:
En este sistema, los átomos se organizan en una red tridimensional similar a la del sistema cúbico, pero con ejes x e y perpendiculares entre sí, mientras que el eje z es de longitud distinta y perpendicular a los otros dos ejes. Al igual que en el sistema cristalino cúbico, existen tres tipos de redes cristalinas tetragonales: tetragonal centrada en el cuerpo, tetragonal centrada en las caras y tetragonal simple.
El circonio (Zr) es un metal que pertenece al sistema cristalino tetragonal centrado en el cuerpo.
Ahora, cuando se conoce y se comprende las estructuras crsitalinas una amplia variedad de compuestos metálicos, soluciones sólidas aparecen, cada uno con sus caracteristicas únicas. Los estudiosos de la crsitalografían encuentran en los índices de Miller una herramienta importante para estudiar estos compuestos.
El índice de Miller, se utiliza para describir los planos y direcciones cristalinas, es una notación matemática que indica la relación relativa entre los planos y direcciones en una estructura cristalina.
Para determinar el índice de Miller de un plano, primero necesitamos identificar los puntos de intersección del plano con los ejes cartesianos X, Y y Z. Luego, tomamos el inverso de esos valores de intersección y los multiplicamos por un factor común para obtener números enteros. Por ejemplo, si un plano interseca el eje X en 1/4, el eje Y en 1/2 y el eje Z en 1/8, el índice de Miller del plano sería (4, 2, 8).
Para determinar el índice de Miller de una dirección, se siguen pasos similares. Identificamos los puntos en los que la dirección corta los ejes cartesianos, tomamos los inversos y multiplicamos por un factor común. La notación de dirección tiene la forma [uvw].
Imaginemos que tenemos una estructura cristalina cúbica con un plano que pasa por las intersecciones de los ejes a 1/2, b 1/4 y c 1/8. ¿Cuál es el índice de Miller de este plano?
Para obtener el índice de Miller del plano, tomamos el inverso de los valores de intersección y los multiplicamos por un factor común. En este caso, si multiplicamos por 8, obtenemos (4, 2, 1), por lo que el índice de Miller del plano sería (4, 2, 1).
Supongamos que tenemos ahora una dirección que corta los ejes cartesianos a -1/2a, 1/4b y 2c. ¿Cuál es el índice de Miller de esta dirección?
Siguiendo el mismo procedimiento, tomamos el inverso de los valores de intersección y los multiplicamos por un factor común. En este caso, si multiplicamos por 4, obtenemos (-2, 1, 8), por lo que el índice de Miller de la dirección sería [-2, 1, 8].
Fijense que comenzamos hablando de las estructuras cristalinas y a partir de ellas utilizamos los índices de Miller para determinar planos y direcciones cristalográficas, en la metalurgia mecánica los planos y direcciones pueden informarnos de como se desplazan los átomos cuando estan sometidos a esfuerzos, movimiento de dislocaciones y vacancias. En la metalurgia física estos estudios permiten relacionarlos con la difracción de rayos X que es una herramienta que permite identificar un compuesto en particular.
Los compuestos poseen huellas digitales únicas y cuando utilizamos difracción de rayos X lo que se busca es identificar dichas huellas, laonda electromagnética del rayo X se encuentra con una red de átomos orientados tridimensionalmente siguiendo sus planos cristalinos, al interactuar se forman picos de difracción en un patrón de difracción de rayos X. La intensidad de esos picos se puede utilizar para determinar la estructura y composición de aleaciones.